How can we find black holes? Yoshiyuki Inoue **Department of Earth and Space Science**

SciScis Workshop @ Osaka, 2021-03-15

Black Hole No light can get out = We can not see

We can see invisibles. Guess from circumstantial evidence

How do we see the universe?

~13.8 Glyr ~10²³ km **Very Very Far**

Finding black holes through <u>light</u>

Do Black Holes Shine? Water Power Plant

https://www.sbenergy.jp/study/illust/water/

- Black hole itself does not shine. But, surrounding gas shines.
 - Release gravitational potential energy through gas fall (accretion).
- Gas fall \rightarrow Gas friction \rightarrow Frictional heat \rightarrow Radiation

Black Hole Power Plant

https://apod.nasa.gov/apod/ap131120.html

Which black hole can we see? **Example: Black Hole Binary System**

- A system consisting one black hole and one star
- Orbiting around each other.
 - like the Sun and the Earth
- Orbital period : ~1 day
- Separation : a few times solar radius

Cygnus X-1: First Black Hole Candidate One of the most well studied black hole binary systems.

Minoru Oda

• Black holes show strong variability

• = extreme environment.

- Every ~10 years, Galactic black holes unleashes extraordinarily bright X-Ray burst.
 - >100 times brighter in a few days.

Disk Instability Model Why are X-raying black hole variable?

• Black hole accreting materials (disk) changes its states.

Instability

Sorry in Japanese. But, for students, you may want to read this book 嶺重慎 ブラックホール天文学入門

https://www.youtube.com/watch?v=qKq2OGG7m68

Let's find black holes using X-ray Take Roentgen photo of the sky

- These bright spots are X-rays from supermassive black holes.
 - one million to 10 billion solar mass.

SRG/e-ROSITA

SRG/eROSITA 0.3-2.3 keV - RGB Map

One Million Objects

Let's take a photo of a Black Hole. First Image of a black hole?

- M87 galaxy
- 55 million light year
- 6.5 billion solar mass

Radio wave @ 1.3 mm
Smart phones use ~cm waves
Resolution : 20 µarcsec (???)

Finding black holes through motion

Nobel Prize in Physics 2020 Black holes and the Milky Way's darkest secret

Remember High School Physics Kepler Motion

- Consider motion of point mass (<u>m</u>) orbiting around an object with a mass of <u>M</u> with a separation distance of <u>r</u>.
- Given the angular velocity ω:

•
$$mr\omega^2 = G \frac{mM}{r^2}$$

• Circular velocity $v_K = r\omega$, then

•
$$v_K = \sqrt{\frac{GM}{r}}$$

Supermassive Black Hole at the Center of the Galaxy Physics is high school level. But, its importance is Nobel prize level.

- Kepler motion of stars by the gravity of the central black hole
- Supermassive (>10⁶ solar mass) black holes @ galactic center
 - In the Milky way,
 - $M_{\rm BH} \sim 4 \times 10^6 M_{\odot}$

Motion of Stars at the Galactic center

S0-19 2016.7 S0-16 S0-61 S0-17 **S0-8** S0-2 **S0-3** S0-49 S0-20 S0-38 S0-5 S0-40 **S**0-4 S0-30 Keck/UCLA Galactic **Center Group**

Radio

- Accreting gas emit radio emission
- First discovery of Kepler motion around a supermassive black hole

Distance along Najor Axis (mas)

Nakai+'93; Miyoshi+'95

Find Black Holes through Gravitational Waves xxx black holes are found

Black holes in the Universe

Many Black Holes? Milky Way

• >10¹¹ stars in our Galaxy >107 black holes are expected! Observed black holes: a few tens only.

Many Black Holes? Universe

•>10¹¹ galaxies • in the Milky way, >107 black holes. Then, >10¹⁸ black holes in the sky!

Supermassive Black Holes and Galaxies

• Massive galaxies harbors more massive black holes.

Velocity Dispersion of Galaxies

Supermassive Black Holes and the Universe

 Black hole activity pushes gas away at large scale.

Please ask Abed (Our moderator), why and how.

~106 lyr

Extreme Phenomena around Black Holes Hot plasma & High Energy Particles → X-ray, Gamma-ray, Cosmic-ray, Neutrino

Neutrinos from a Nearby Supermassive Black Hole?

IceCube 2020

• TeV neutrinos are reported from a nearby supermassive black hole.

• How generated? Black hole corona?

- Black hole information?
- Are there primordial black holes?
- How can black holes are formed?
- How many black holes in the universe?
- How can supermassive black hole be formed?
- How does gas fall into black holes?

- Relativistic jet formation, correlation, and acceleration?
- How do they evolve together with galaxies?
- What do they do for galaxies?
- Can they make ultra-high-energy cosmic rays?
- and more...

Summary

Using physics, we can find "Black Holes".

Evolution of Supermassive Black Holes

 Luminous (~Massive) black holes were more actively formed in the past.

巨大ブラックホールの作り方 リース・ダイアグラム

でかい星をつくる

 ・
 星団を作ってから合体合成

Supermassive Black Holes are Active

imaginary picture of AGN

Gas accretion

brighter than galaxy

<u>Active Galactic Nuclei (AGNs)</u>

- Various populations
 - Blazar, Radio galaxy, Seyfert
- Unsolved mysteries of AGNs
 - Evolution? Power? Jet? Corona?,,,,

Millimeter Excess in Nearby Seyferts

Millimeter excess in nearby Seyferts

Barvainis+'96

10 "

10 11

Spectral excess in the mm-band

(e.g., Antonucci & Barvainis'88; Barvainis+'96; Doi & Inoue '16; Behar+'18).

- Contamination of extended components?
- Multi-frequency property?

Now we live in the ALMA era.

- The Atacama Large Millimeter/submillimeter Array (ALMA) is an astronomical
- Covers millimeter and submillimeter bands.
- Has much higher sensitivity and higher resolution than before.

interferometer of 66 radio telescopes in the Atacama Desert of northern Chile (from wikipedia).

Structure of AGN core in the <10 pc scale Where is the origin of the mm excess?

Ramos-Almeida & Ricci '17

- Dust torus?
 - spectral shape, not enough, variability
- Free-free?
 - spectral shape, not enough
- Jet?

Torus

- radio-quiet, no blazar like activity
- Corona?

Coronal Synchrotron Emission

X-ray emission from black hole corona

Hickox & Alexander+'16

 Power-law continuum is generated by Comptonization of disk photons in the corona.

Black Hole Accretion disk corona Hot plasma around BH

• High energy cutoff $\sqrt{k_B T_e} \sim 10^9 \text{ K} \sim 100 \text{ keV}$

Power-law spectrum:
 Compton y-parameter

 $\sqrt{n_e} \sim 10^9 \left(\frac{k_B T_e}{100 \text{ keV}}\right) \left(\frac{M_{\text{BH}}}{10^8 M_{\odot}}\right)^{-100}$ -1 cm^{-3}

Solar corona heating **Dissipation of magnetic energy**

- Magnetic activity heats the solar corona to ~10⁶ K.
- Magnetic fields transfer interior convection energy to the corona (e.g., Matsumoto & Suzuki '14).

Magnetic Reconnection Heated Corona Model Haardt & Maraschi '91; Liu, Mineshige, & Shibata '02

1. Reconnection heating = Compton cooling in corona

$$\sqrt{\frac{B^2}{4\pi}} V_A \approx \frac{4k_B T_e}{m_e c^2} n_e \sigma_T c U_{\text{seed}} l \sim y c U_{\text{seed}}$$

2. Conduction heating = Evaporation cooling in disk chromosphere

$$\int \frac{k_0 T^{7/2}}{l} \approx \frac{\gamma}{\gamma - 1} n_e k_B T_e \left(\frac{k_B T_e}{m_H}\right)^{1/2}$$

$$\int T_e \sim 10^9 \left(\frac{B}{10^3 \text{ G}}\right)^{3/4} \left(\frac{l}{10^{14} \text{ cm}}\right)^{1/8} \left(\frac{U_{\text{seed}}}{10^5 \text{ erg/cm}}\right)^{1/8}$$

$$n_e \sim 10^9 \left(\frac{B}{10^3 \text{ G}}\right)^{3/2} \left(\frac{l}{10^{14} \text{ cm}}\right)^{-3/4} \left(\frac{U_{\text{seed}}}{10^5 \text{ erg/cm}}\right)^{1/8}$$

Magnetic Fields around SMBHs

- Never measured. But important for
 - Corona heating (e.g., Haardt & Maraschi '91; Liu, Mineshige, & Shibata '02)
 - Jet launching (e.g., Blandford & Znajek '77; Tchekhovskoy+'10, '11)
- If the corona is magnetized
 - coronal synchrotron radiation is expected (Di Matteo+'97; YI & Doi '14; Raginski & Laor '16)
 - Spectral excess appears in the mm band

cm-mm spectrum of AGN core A case of IC 4329A

- Hybrid corona model (YI & Doi '14)
- Non-thermal electron fraction : $\eta = 0.03$ (fixed)
 - Consistent with the MeV gammaray background spectrum (YI, Totani, & Ueda '08; YI+'19)
- Non-thermal spectral index: p = 2.9
- Size: 40 r_s
- B-field strength : 10 G

Reconnection Corona Heating? Implication for the truncated accretion disk structure.

- Heating and Cooling
 - Magnetic Heating: $B^2 V_A / 4\pi$
 - $Q_{B,heat} \sim 10^{10} \text{ erg/cm}^2/\text{s}$
 - Compton Cooling: $4kTn_e\sigma_T cU_{rad}l/m_ec^2$
 - $Q_{IC, cool} \sim 10^{13} erg/cm^2/s$
 - Magnetic field energy is <u>NOT</u> sufficient
 Simultaneous model fitting to X-ray and radio data is required.

- Disk truncation at some radii (e.g. ~40 r_s)
 - The inner part = hot accretion flow (Ichimaru '77, Narayan & Yi '94, '95).
 - Heated by advection.
 - Suggested for Galactic X-ray binaries. (e.g. Poutanen+'97; Kawabata+'10; Yamada+'13).

High Energy Emission From Coronae

Radio Spectrum of AGN Core Non-thermal tail in the mm spectrum

Generation of Non-thermal Electrons in Coronae

- 1st-order Fermi acceleration can explain the observed electrons
 - Injection index of 2
 - Where is the acceleration site?
- Other mechanisms may be difficult.
 - Because of low magnetic field and accretion rate.

 10^{2}

10³

10⁴

γe

10²

10¹

10

YI + '19

10⁵

High energy emission from AGN coronae Multi-messenger Signature: MeV Gamma-ray & TeV Neutrinos

- MeV emission
 - but, no GeV emission
- Protons would be accelerated simultaneously
 - Generation of high energy neutrinos

(see also Müller & Romero '20, Murase+'20).

Cosmic High Energy Background Radiation Integrated history of the Universe

- Murase+'20).
- Seyferts can explain X-ray & MeV gamma-ray background (YI+'08, YI+'19).

• Seyferts can explain TeV neutrino background (see also Begelman+'90; Stecker+'92; Kalashev+'15;

• But, if both protons and electrons carry ~5% of the shock energy and gyrofactor is 30.

MeV PL tail

Nuclear spallation in X-ray

Future MeV Observations

Open the MeV Gamma-ray Astronomy

Various proposals: AMEGO, COSI-X, GRAINE, SGD, SMILE,...

Our plan: First, go to balloon missions. Then, to the space.

Gamma-Ray and AntiMatter Survey (GRAMS) Liquid Argon Time Projection Chamber (LArTPC) surrounded by Plastic scintillators

- LArTPC: Compton camera and calorimeter
- LARTCREUCE on plant carrier and calerits eter Signal localized by segmentation to reduce coincident background electrostrosteriostarios de la contena experiments

• LAWPS/jsamonacodstplenfe(&,tiv)ed and imported to the teasily dex particulation of the second states of the seco

ごう ブラックホールは「見える」