Unveiling the Coronal Magnetic Activity of Supermassive Black Holes with ALMA Yoshiyuki Inoue

ALMA/45m/ASTE Users Meeting @ Online, 2021-01-06

Multi-wavelength spectrum of Radio-quiet AGNs

What is the origin of the radio emission?

Millimeter excess in nearby Seyferts

Barvainis+'96

10 "

10 11

Spectral excess in the mm-band

(e.g., Antonucci & Barvainis'88; Barvainis+'96; Doi & Inoue '16; Behar+'18).

- Contamination of extended components?
- Multi-frequency property?

Structure of AGN core in the <10 pc scale Where is the origin of the mm excess?

Ramos-Almeida & Ricci '17

- Dust torus?
 - spectral shape, not enough, variability
- Free-free?
 - spectral shape, not enough
- Jet?

Torus

- radio-quiet, no blazar like activity
- Corona?

Hickox & Alexander+'16

- If so, coronal synchrotron radiation is expected (Di Matteo+'97; YI & Doi '14; Raginski & Laor '16)

cm-mm spectrum of AGN core A case of IC 4329A

- Hybrid corona model (YI & Doi '14)
- Non-thermal electron fraction : $\eta = 0.03$ (fixed)
 - Consistent with the MeV gammaray background spectrum (YI, Totani, & Ueda '08; YI+'19)
- Non-thermal spectral index: p = 2.9
- Size: 40 r_s
- B-field strength : 10 G

Reconnection Corona Heating? Implication for the truncated accretion disk structure.

- Heating and Cooling
 - Magnetic Heating: $B^2 V_A / 4\pi$
 - $Q_{B,heat} \sim 10^{10} \text{ erg/cm}^2/\text{s}$
 - Compton Cooling: $4kTn_e\sigma_T cU_{rad}l/m_ec^2$
 - $Q_{IC, cool} \sim 10^{13} erg/cm^2/s$
 - Magnetic field energy is <u>NOT</u> sufficient
 Simultaneous model fitting to X-ray and radio data is required.

- Disk truncation at some radii (e.g. ~40 r_s)
 - The inner part = hot accretion flow (Ichimaru '77, Narayan & Yi '94, '95).
 - Heated by advection.
 - Suggested for Galactic X-ray binaries. (e.g. Poutanen+'97; Kawabata+'10; Yamada+'13).

Radio Spectrum of AGN Core Non-thermal tail in the mm spectrum

High energy emission from AGN coronae Multi-messenger Signature: MeV Gamma-ray & TeV Neutrinos

- Non-thermal electrons
 - Comptonization
 - MeV emission
 - But, no GeV emission
- Non-thermal protons
 - High energy neutrinos

(see also Müller & Romero '20, Murase+'20).

MeV PL tail

Nuclear spallation in X-ray

Summary

- Radio spectra (mm-band) of Seyferts are still not well understood.
- The mm-excess seems exist ubiquitously in nearby Seyferts.
 - ~1-10 mJy
 - Probably, originated from coronal synchrotron emission.
- Magnetic field are not strong enough to keep coronae hot.
- AGN Corona is a production site of high energy particles.
 - Can explain IceCube neutrino events (NGC 1068)

Generation of Non-thermal Electrons in Coronae

- 1st-order Fermi acceleration can explain the observed electrons
 - Injection index of 2
 - Where is the acceleration site?
- Other mechanisms may be difficult.
 - Because of low magnetic field and accretion rate.

 10^{2}

10³

10⁴

γe

10²

10¹

10

YI + '19

10⁵

Cosmic High Energy Background Radiation Integrated history of the Universe

- Murase+'20).
- Seyferts can explain X-ray & MeV gamma-ray background (YI+'08, YI+'19).

• Seyferts can explain TeV neutrino background (see also Begelman+'90; Stecker+'92; Kalashev+'15;

• But, if both protons and electrons carry ~5% of the shock energy and gyrofactor is 30.