Status & Prospect of Gamma-ray Astronomy Yoshiyuki Inoue (Osaka) Special thanks to Takahiro Sudoh (Tokyo) & Dmitry Khangulyan (Rikkyo)

CRC Town Meeting @ Online, 2020-09-28

Contents

- Gamma-ray Astronomy
- Recent Interesting Results
 - Jet Power, Cosmic Star Formation History, Spatial Extension
- Future of Gamma-ray Astronomy?
- Summary

Gamma-ray <u>Astronomy</u>

Origin of Cosmic Rays

Relativistic Jets

"Quasar / Seyfert 1" Viewing at an angle to the je "Radio Galaxy / Seyfert 2 Viewing at 90° from the j

© NASA

Why Gamma-ray Astronomy? **Gamma-ray** : $\gtrsim 0.1 \text{MeV}$

Origin of Matter

Blazars

• Spectral fitting can tell the particle energy distribution.

➡ Jet power estimation

• Accretion rate from emission lines

 Correlation between jet power and accretion rate (Ghisellini+'14; YI & Tanaka '16)

• $P_{\text{jet}} \gtrsim \dot{M}_{\text{in}} c^2$

Jet Power < Accretion Power? Radio Galaxies

- Jet power can be estimated from X-ray cavity and hot spot (Godfrey & Shabala '13)
 - A well-known empirical relation between radio and jet power (Willott+'99)

Current Situation of AGN Jet Power

Blazar SED Fitting

 \triangle C IV, Mg II (z > 1) \Box Mg II (z > 1) <u>-</u> 47 10⁴⁸ \bigcirc C IV (z > 1) യ ച 46 ☆ BL Lacs 10⁴ $P_{\rm jet}$ (erg s⁻¹) **10**⁴⁶)⁰¹80 **Δ** Hβ, Mg II (*z* < 1) Φ 44 10⁴⁵ **H**β (*z* < 1) et **10**⁴⁴ \bigotimes Mg II (z < 1) Average error **10**⁴³ 45 46 Bolometric Disk Luminosity $\log_{10}(L_{\text{disk}} \text{ [erg s}^{-1}]) = \log_{10}(\epsilon \dot{M}c^2)$ $\dot{M}c^2$, $\eta = 0.3$ (erg s⁻¹) Ghisellini+'14

Large-scale Jet

YI+'17

- Blazar Method
 - Minimum electron Lorentz factor γ_{min} ~1
 - Composition
- Large-scale Jet Method
 - Different Timescale
- We need to understand this discrepancy.
 - e.g., important for neutrinos.

Gamma-ray Astrophysics with Cosmic History

 $\gamma_{\gtrsim 100 \text{ GeV}} + \gamma_{\text{EBL}} \rightarrow e^+ + e^-$

- Extragalactic Background Light (EBL)
 - Integrated history of cosmic star formation activity.

10²

Determination of the Cosmic Star Formation History Time since Big Bang (Gyr) 6 5 1.213 9 3 $\tilde{\mathbf{O}}$ Consistent with galaxy ·1Mpc survey data. 0.1• Need to assume the EBL ΥΓ. shape. $\underline{\overset{\odot}{\geq}}_{0.0}$ • sum of log-normal (Blue) stellar population EBL reconstruction $\dot{p}(z)$ synthesis (Green) Physical EBL model UV & LBG Survey Data (1)

2

Redshift

Spatial Extension of Cen A Seen by Fermi and H.E.S.S. 5 deg

deg

0

0

Spatial Extension of Cen A Seen by Fermi and H.E.S.S.

20 mas A, 8.6 GHz .9 GHz

NOTE: Color scale is radio! HESS region is WHITE circle.

Unusual Spectral Hardening in the Cen A Spectrum

• consistent with a general analysis of FR-II galaxies (Sikora+'20)

• Knots : $\eta_B \sim \eta_e \sim 0.1$

>20 TeV Gamma-ray from SS 433 Knots by HAWC

©NRAO

- SS 433 is a Galactic microquasar.
- Twin jets
- $v_{jet} \sim 0.26c$
- $L_{\rm jet} \sim 10^{39}$ erg/s

Efficient Particle Acceleration in the SS 433 jet Sudoh, YI, & Khangulyan '20; Kimura, Murase, & Meszaros '20 Leptonic

- Both OK.
 - acceleration
 - Tanaka '16)
 - LHAASO is needed.

• Both require efficient

• Different from blazars (Inoue & Takahara '96; Finke+'08; YI &

Confirmation by CTA &

X-ray and GeV data are keys.

SS433 Seen by e-ROSITA

0.5-6 keV

http://novostinauki.ru/news/162232/

Where is the GeV emitting region? **Different people report different places...**

286.7

287.3

3.7 289.2

288.6

288.0

- 6 different images
- 6 different GeV spectra
- Some report periodicity, some not.

Request for (Young) CRC Members What will you do in the next 20-30 years? タウンミーティングについて

CRCでは、現在検討中の将来計画についての検討を行い、研究者のコンセンサスを形成するためにタウンミーティングを開催してゆきます。

9/28(月) 「地上ガンマ線観測」 9:00-9:40 理論レビュー 井上芳幸(理研) 9:40-10:10 CTA全体状況 手嶋政廣(東大ICRR) 10:10-10:30 CTA-LST-N の建設状況 窪秀利(京大) 10:30-11:50 CTA-Sへ向けてのSiPM 開発 田島宏康(名大ISEE) 11:50-11:10 ALPACA さこ隆志(東大ICRR) 11:10-11:40 議論

- Senior people only.

Now the time scale of astrophysics projects can be >15 years from the idea to realization.

• What's next? When I become 60 years old, what kind of projects we have in Japan?

Open the MeV Gamma-ray Astronomy

Various proposals: AMEGO, COSI-X, GRAINE, SGD, SMILE,...

Our plan: First, go to balloon missions. Then, to the space.

Gamma-Ray and AntiMatter Survey (GRAMS) Liquid Argon Time Projection Chamber (LArTPC) surrounded by Plastic scintillators

- LArTPC: Compton camera and calorimeter
- LARTCREUCE on plant carrier and calerits eter Signal localized by segmentation to reduce coincident background electrostrosteriostarios de la contena experiments

• LAWPS/jsamonacodstplenfe(&,tiv)ed and imported to the teasily dex particulation of the second states of the seco

GRAMS Collaboration

- ~20 members from US and Japan
 - We are expecting to have the first ballon flight in 5-7 years.

Gamma-ray Astronomy in 2020s

At >20 GeV, CTA and LHAASO will enable us to observe >10 times fainter sources.

• In the MeV band, GRAMS will enable us to observe >10 times fainter sources.

Number of Gamma-ray Objects

Multi-wavelength/Multi-messenger Astronomy? **Already Long History**,,

See also Takahashi+'1996

- Multi-wavelength astronomy has already started in 1995 (or 1966). NOT in 2010s,,,,
- How will you do in 2020s?

Optical ID of Sco X-1

photoelectric photometry exists are also marked.

Summary

- Jet power argument should be solved.
- structure.
- What is your plan for the gamma-ray missions in the next 20, 30 years?

• Now gamma-ray observations start to measure the cosmic star formation history. • New extended gamma-ray objects are emerging. CTA should study the detailed

		3
Anode wire	es/pads	Semiconductor Detector (Si/Ge) Si/Ge Pream
Z Y X	SiPMs LArtPC	Frame
	LArTPC	Semiconductor (Si/Ge)
ρ (g/cm³)	1.4	2.3/5.3
T _{operation}	~80K	~240K/~80K
Cost	\$	\$\$\$
Signal	scintillation light + Ionization electrons	electrons, holes
X, Y Positions	wires on anode plane (X-Y)	double-sided strips
Z position	from drift time	from layer #
# of Layers	1 layer	multi-layers
# of Electronics	#	###
Dead Volume	almost no dead volume	detector frame, preamps
Neutron bkg	Identified with pulse shape	No rejection capability
I ADTRO IC COCT FFFCTIVE AND FACILY EVRANDADIE TO A LARCER COALE		

LARTPC IS COST-EFFECTIVE AND EASILY EXPANDABLE TO A LARGER-SCALE, MUCH LESS CHANNELS/ELECTRONICS REQUIRED, ALMOST NO DEAD VOLUME

WHY LARTPC?

GRAMS ANTIMATTER DETECTION CONCEPT

MEASURE ATOMIC X-RAYS AND ANNIHILATION PRODUCTS

Annihilation products provide additional background suppression

Concept proven with accelerator beam test Cascade model developed for X-ray yields

10

WHY ANTIDEUTERONS?

BACKGROUND-FREE DM SEARCH AT LOW-ENERGY

GAPS FIRST SCIENCE FLIGHT IS SCHEDULED FROM ANTARCTIC IN 2021 GRAMS: NEXT-GENERATION EXPERIMENT

5

MeV Gamma-ray Sky

High Energy Astrophysics + Nuclear Astrophysics

Cyg X-

Vela

Note: 56 Candidates in GW now

PKS0528

 $> 1 \times 10^{-10} \, \text{erg/cm}^2/\text{s}$

C27

Cen

3C279

MeV Gamma-ray Science

Dark Matter

Starburst Galaxies

NS merger

X-rav/v-ray Binaries Hiroki Yoneda's talk

SNRs & PWN

Sun

Terrestrial Flashes

Novae

Gamma-ray bursts

Further details

Reshmi Mukherjee's talk

More Consideration Needed For

- Dark Matter Search from Anti-matter
 - Unique point of GRAMS

Kerstin Perez's Talk

Polarization of the Crab nebula

- Polarization at MeV band
 - Unique point of Compton camera